Computational assessment of the effects of a pulsatile pump on toxin removal in blood purification

نویسندگان

  • Ki Moo Lim
  • Eun Bo Shim
چکیده

BACKGROUND For blood purification systems using a semipermeable membrane, the convective mass transfer by ultrafiltration plays an important role in toxin removal. The increase in the ultrafiltration rate can improve the toxin removal efficiency of the device, ultimately reducing treatment time and cost. In this study, we assessed the effects of pulsatile flow on the efficiency of the convective toxin removal in blood purification systems using theoretical methods. METHODS We devised a new mathematical lumped model to assess the toxin removal efficiency of blood purification systems in patients, integrating the mass transfer model for a human body with a dialyser. The human body model consists of a three-compartment model of body fluid dynamics and a two-compartment model of body solute kinetics. We simulated three types of blood purification therapy with the model, hemofiltration, hemodiafiltration, and high-flux dialysis, and compared the simulation results in terms of toxin (urea and beta-2 microglobulin) clearance and the treatment dose delivered under conditions of pulsatile and non-pulsatile pumping. In vivo experiments were also performed to verify the model results. RESULTS Simulation results revealed that pulsatile flow improved the convective clearance of the dialyser and delivered treatment dose for all three types of therapy. Compared with the non-pulsatile pumping method, the increases in the clearance of urea and beta-2 microglobulin with pulsatile pumping were highest with hemofiltration treatment (122.7% and 122.7%, respectively), followed by hemodiafiltration (3.6% and 8.3%, respectively), and high-flux dialysis (1.9% and 4.7%, respectively). EKRc and std Kt/V averaged 28% and 23% higher, respectively, in the pulsatile group than in the non-pulsatile group with hemofiltration treatment. CONCLUSIONS The pulsatile effect was highly advantageous for all of the toxins in the hemofiltration treatment and for beta2-microglobulin in the hemodiafiltration and high-flux dialysis treatments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery

A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with non-Newtonian models using ADINA. Blood flow was considered laminar, and the arterial wall was considered rigid. Studied stenosis severities were 30, 50, and 70% of the cross-section...

متن کامل

An advection-diffusion multi-layer porous model for stent drug delivery in coronary arteries

Arterial drug concentration distribution determines local toxicity. The safety issues dealt with Drug-Eluting Stents (DESs) reveal the needs for investigation about the effective factors contributing to fluctuations in arterial drug uptake. The current study focused on the importance of hypertension as an important and controversial risk factor among researchers on the efficacy of Heparin-Eluti...

متن کامل

Numerical Study of the tongue geometry effects on the cavitation and performance of a centrifugal pump in off-design conditions

In this study, the effects of the volute tongue geometry variation on the head, efficiency, velocity distribution and cavitation structure of a centrifugal pump in the steady flow behavior under off-design conditions have been investigated. Numerical simulation modeling based on the  turbulence model with a hybrid grid is used to simulate the flow within the modeled pump. The flow is simulated ...

متن کامل

PULSATILE MOTION OF BLOOD IN A CIRCULAR TUBE OF VARYING CROSS-SECTION WITH SLIP FLOW

Pulsatile motion of blood in a circular tube of varying cross-section has been developed by considering slip flow at the tube wall and the blood to be a non- Newtonian biviscous incompressible fluid. The tube wall is supposed to be permeable and the fluid exchange across the wall is accounted for by prescribing the normal velocity of the fluid at the tube wall. The tangential velocity of the fl...

متن کامل

Study of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction

Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2010